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bstract

In this paper we study a self-adaptive predictive functional control algorithm as an approach to the control of the temperature in an exothermic
atch reactor. The batch reactor is located in a pharmaceutical company in Slovenia and is used in the production of medicines. Due to mixed discrete
nd continuous inputs the reactor is considered as a hybrid system. The model of the reactor used for the simulation experiment is explained in the
aper. Next, we assumed an exothermic chemical reaction that is carried out in the reactor core. The dynamics of the chemical reaction that comply
ith the Arrhenius relation have been well documented in the literature and are also summarized in the paper. In addition, the online recursive

east-squares identification of the process parameters and the self-adaptive predictive functional control algorithm are thoroughly explained. We
ested the proposed approach on the batch-reactor simulation example that included the exothermic chemical reaction kinetic model. The results
uggest that such an implementation meets the control demands, despite the strongly exothermic nature of the chemical reaction. The reference
s suitably tracked, which results in a shorter overall batch-time. In addition, there is no overshoot of the controlled variable T, which yields a

igher-quality production. Finally, by introducing a suitable discrete switching logic in order to deal with the hybrid nature of the batch reactor,
e were able to reduce the switching of the on/off valves to a minimum and therefore relieve the wear-out of the actuators as well as reduce the

nergy consumption needed for control.
2008 Elsevier B.V. All rights reserved.
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. Introduction

Batch reactors that are cooled and heated through a water
acket are common in chemical, pharmaceutical, biotechnolog-
cal and similar industries. Therefore, many papers discussing
he temperature control of such systems have been published.
ynamic systems that involve continuous and discrete states

re called hybrid systems. Most industrial processes contain
oth continuous and discrete components, for instance, discrete
alves, on/off switches, logical overrides, etc. The continu-
us dynamics are often inseparably interlaced with the discrete
ynamics; therefore, a special approach to modelling and con-

rol is required. At first this topic was not treated systematically
14]. In recent years, however, hybrid systems have received a
reat deal of attention from the computer science and control

∗ Correspondingauthor. Tel.: +386 1 4768 701; fax: +386 1 4264 631.
E-mail address: gorazd.karer@fe.uni-lj.si (G. Karer).
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ommunity. Due to the mixed discrete and continuous inputs,
atch reactors can also be regarded as hybrid systems.

Many times in industrial practice the dynamics of the batch
eactor are not known in advance. Furthermore, often an exother-
ic (or endothermic) chemical reaction is carried out in a batch

eactor, which can result in a thermal runaway. Such an event
an cause the loss of the batch and can even represent a risk to
he plant and the operators. For most reaction systems of indus-
rial interest detailed kinetic models are not known [6]. In the
apidly changing chemical business, there is often not enough
ime or financial benefit in carrying out detailed kinetic studies
f the reactions.

Some industrial batch reactors have to be able to deal with dif-
erent batches and ingredients, and, therefore, different reaction
ynamics are involved. This calls for special control strategies,

ince a classic approach, where a time-invariant process is pre-
umed, is not suitable. The concepts of adaptive control [4],
ptimal control [7,3,11], and especially model predictive control
chemes [8–10] seem to be the most appropriate. The principle

mailto:gorazd.karer@fe.uni-lj.si
dx.doi.org/10.1016/j.cep.2008.01.015
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Fig. 1. Scheme of the batch reactor.

f model predictive control is based on forecasting the future
ehavior of a system at each sampling instant using the process
odel.
One of the most frequently used approaches in practice is pre-

ictive functional control [12], which is also treated in this paper.
he main advantage of the approach is the analytical explicit
xpression of the control law, which does not require high
omputational capabilities and can therefore be implemented
n real-time using low-cost hardware on most systems.

The paper is organized as follows. In Section 2, the batch reac-
or and its mathematical model are presented, and the exothermic
hemical reaction dynamics are summarized. In Section 3, the
ecursive least-squares identification is explained and the pre-
ictive functional control algorithm is presented. Finally, the
imulation results and conclusions are discussed in Sections 4
nd 5.

. The plant

.1. Batch reactor

The experimental batch reactor is a simulation example of a
eal batch reactor, which is located in a pharmaceutical company
nd is used in the production of medicines. The goal is to control
he temperature of the ingredients stirred in the reactor core so
hat they synthesize into the final product. In order to achieve
his, the temperature has to follow the reference trajectory pre-
cribed in the recipe as accurately as possible.

A scheme of the batch reactor is shown in Fig. 1. The reactor’s
ore (temperature T) is heated or cooled through the reactor’s
ater jacket (temperature Tj). The heating medium in the water

acket is a mixture of fresh input water, which enters the reactor
hrough on/off valves, and reflux water. The water is pumped
nto the water jacket with a constant flow φ. The dynamics of
he system depend on the physical properties of the batch reactor,
.e. the mass m and the specific heat capacity c of the ingredients
n the reactor’s core and in the reactor’s water jacket (here, index

denotes the water jacket). λ is the thermal conductivity, S is the
ontact area and T0 is the temperature of the surroundings.

The temperature of the fresh input water Tin depends on
wo inputs: the positions of the on/off valves kH and kC. How-

A

B
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ver, there are two possible operating modes for the on/off
alves. In case kC = 1 and kH = 0, the input water is cool
Tin = TC = 12 ◦C), whereas if kC = 0 and kH = 1, the input
ater is hot (Tin = TH = 150 ◦C). Both on/off valves are con-

rolled by the signal kCH that is defined in the following equation.
ue to the mixed discrete and continuous inputs, the batch reac-

or is regarded as a hybrid system.

CH =
{

+1, if kC = 0 and kH = 1

−1, if kC = 1 and kH = 0
(1)

The ratio of fresh input water to reflux water is controlled by
he third input, i.e., by the position of the mixing valve kM. The
alue range of the mixing valve is in [0,1].

.2. Mathematical model of the batch reactor

We are dealing with a hybrid multivariable system with three
iscrete inputs (kM, kH and kC) and two measurable outputs (T
nd Tj).

The temperature of the mixed water or the input-jacket tem-
erature, which is denoted as T ∗

jin, cannot be measured directly.
owever, it is possible to estimate it using the temperature of the

nput water Tin, the water-jacket temperature Tj , and the position
f the mixing valve kM (see Eq. (4)). T ∗

jin is constrained in the
ange between TC and TH (TC ≤ T ∗

jin ≤ TH).
Due to the nature of the system, the time constant of the tem-

erature in the water jacket is obviously much shorter than the
ime constant of the temperature in the reactor’s core. Therefore,
he batch reactor is considered as a stiff system.

The mathematical model of the batch reactor is defined by the
ollowing two differential equations and one algebraic equation.

jcj
dTj
dt

= kM�cjTin + (1 − kM)�cjTj −�cjTj

−λS(Tj − T ) − λ0S0(Tj − T0) (2)

c
dT

dt
= λS(Tj − T ) +Qr (3)

∗
jin = kMTin + (1 − kM)Tj (4)

The parameters of the model are presented in Table 1.

.3. Exothermic chemical reaction model

The exothermic reaction considered in this experiment is
ased on a dynamic model benchmark originally developed for
he Warren Springs Laboratory [2,6,5]. A well-mixed liquid-
hase reaction system is treated, in which two reactions are
odelled.

+ B → C (5)
+ C → D (6)

The concentration (number of moles) of the components A,
, C and D changes according to the rates of production of the
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Table 1
Parameters of the batch reactor

Parameter Value Meaning

mj 200 kg Mass of the water in the jacket
cj 4200 J kg−1 K−1 Heat capacity of the water in the pipes
� 1.6 kg s−1 Mass flow in the pipes of the reactor
λ 420 W m−2 K−1 Thermal conductivity between the reactor

core and the jacket
λ0 84 W m−2 K−1 Thermal conductivity between the jacket and

the surroundings
S 2 m2 Conduction surface between the reactor core

and the jacket
S0 4 m2 Conduction surface between the jacket and

the surroundings
T0 17 ◦C Temperature of the surroundings
m See Eq. (15) Mass of the ingredients in the core of the

reactor
c See Eq. (17) Heat capacity of the ingredients in the core

of the reactor
Qr See Eq. (18) Heat released due to the exothermic nature

c

c

R

R

t

k

k

m

M

c

Q

Table 2
Parameters of the reaction

Parameter Value Meaning

wA 30 kg kmol−1 Molar weight of component A
wB 100 kg kmol−1 Molar weight of component B
wC 130 kg kmol−1 Molar weight of component C
wD 1600 kg kmol−1 Molar weight of component D
cA 75.31 kJ kmol−1◦C−1 Molar heat capacity of component A
cB 167.36 kJ kmol−1◦C−1 Molar heat capacity of component B
cC 217.57 kJ kmol−1◦C−1 Molar heat capacity of component C
cD 334.73 kJ kmol−1◦C−1 Molar heat capacity of component D
k1

1 20.9057 Reaction rate constant
k2

1 10, 000 ◦C Reaction rate constant
k1

2 38.9057 Reaction rate constant
k2

2 17, 000 ◦C Reaction rate constant
�H1 −41, 840 kJ kmol−1 Heat of reaction
�
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of the reaction among the ingredients in the
core of the batch reactor

omponents C (R1) and D (R2), as given in the equations below.

dMA

dt
= −R1 − R2 (7)

dMB

dt
= −R1 (8)

dMC

dt
= +R1 − R2 (9)

dMD

dt
= +R2 (10)

The rates of production R1 and R2 depend on the reactant
oncentrations and the rate constants k1 and k2.

1 = k1MAMB kmol−1 s−1 (11)

2 = k2MAMC kmol−1 s−1 (12)

The rate constants k1 and k2 are dependent on the reaction
emperature through the Arrhenius relation.

1 = exp(k1
1 − k2

1/(T + 273, 15 ◦C)) (13)

2 = exp(k1
2 − k2

2/(T + 273, 15 ◦C)) (14)

The remaining physical variables are calculated as follows:

= wAMA + wBMB + wCMC + wDMD (15)

= MA +MB +MC +MD (16)

= cAMA + cBMB + cCMC + cDMD

M
(17)
r = −�H1R1 −�H2R2 (18)

The parameters of the reaction are given in Table 2.

ψ

[
t

H2 −25, 105 kJ kmol−1 Heat of reaction

. Control algorithm

.1. Estimation of model parameters

The online determination of the process parameters is a key
lement in adaptive control. The selection of the model’s struc-
ure and the determination of its parameters depend on the
-priori knowledge of the process we want to control.

In the case of the batch reactor, some fundamental dynamic
roperties are known in advance, therefore, the structure of the
resumed model of the batch reactor in incremental form can be
erived and transformed into a discrete-time domain from Eqs.
2)–(4).

We assume that the plant parameters and the time-varying
roperties of the chemical reaction that takes place in the reactor
ave to be estimated online, i.e., during the normal operation of
he reactor.

As shown in Eqs. (19) and (20), we are dealing with two inde-
endently estimated models. To obtain the model in incremental
orm, the offset has to be eliminated, which is realized by fil-
ration and differentiation of the measured signals. Superscript
denotes the filtered signals.

f1(k) = ψT
f1(k)θ1(k) (19)

f2(k) = ψT
f2(k)θ2(k) (20)

Here, yf1(k) = T
f
j (k) is the filtered output of the first

odel and yf2(k) = T f (k) stands for the filtered output of
he second model, denoting the temperature of the water
acket and the temperature of the core, respectively. In
he regressors, the temperature of the water jacket, the
emperature of the core, and the input jacket temperature
re considered: ψT

f1(k) = [T fj (k − 1) T f (k − 1) T ∗f
jin (k − 1)],

f
T
f2(k) = [Tj (k − 1) T f (k − 1)]. The parameter vectors θT

1 =
θ11(k) θ12(k) θ13(k)] and θT

2 = [θ21(k) θ22(k)] consist of
hree and two parameters that have to be estimated, respectively.
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The filtration and differentiation of the measured variables is
ealized by the filter transfer function defined in Eq. (21).

f (z) = �(z)

F (z)
(21)

Here, �(z) = 1 − z−1 is the differential operator. The filter
enominator F (z) = (1 − fz−1)

p
is defined experimentally: in

ur case f = 0.95, p = 3. The sampling time used in the exper-
ment is Ts = 20 s. Both models in Eqs. (19) and (20) are linear
n the parameters, which makes it possible to calculate a least-
quares estimate analytically. One of the main advantages of an
daptive controller is the ability to track variations in the pro-
ess dynamics. In order to achieve this, it has to discount the old
ata and calculate the estimates with an emphasis on new data.
e used a recursive least-squares identification algorithm with

xponential forgetting [1], which is based on a least-squares loss
unction that discounts old data exponentially with time. The
arameters of the model are estimated as shown in the equations
elow.

ˆ
i(k) = θ̂i(k − 1) +Ki(k)(yfi(k) − ψT

fi(k)θ̂i(k − 1)) (22)

i(k) = Pi(k − 1)ψfi(k)(γi + ψT
fi(k)Pi(k − 1)ψfi(k))

−1
(23)

i(k) = (Ii −Ki(k)ψT
fi(k))Pi(k − 1)/γi (24)

Here, Pi(k), i = 1, 2 denotes the covariance matrix
P1(k) ∈R3×3, P2(k) ∈R2×2), θ̂i(k), i = 1, 2 denotes the vec-
or of the identified or estimated process parameters, γi, i = 1, 2
enotes the forgetting factor and I1 ∈R3×3 and I2 ∈R2×2 are
nity matrices. This means that two recursive identification algo-
ithms are running in parallel to estimate the process parameters
1(k) and θ2(k).

The forgetting factor γi, i = 1, 2 is defined in Eq. (25), where
γi stands for the time constant for the exponential forgetting.
n our case: γ1 = γ2 = 0.995.

i = e−(Ts/Tγi ) (25)

The dynamical behavior of the plant variables T fj (k) and
f (k) according to the input-jacket temperature T fjin(k) is given
y the transfer functionsGmj(z) andGm(z), which are obtained
y transforming Eqs. (19) and (20) into the Z-domain and explic-
tly expressing the given relations, which are then described as
ollows:

mj(z) = T
f
j (z)

T
∗f
jin (z)

= b1jz− b0j

z2 − a1z− a0
(26)

m(z) = T f (z)

T
∗f
jin (z)

= b0

z2 − a1z− a0
(27)

Here, b0j = θ22θ13, b1j = θ13, b0 = θ21θ13, a1 = θ22 + θ11

nd a0 = θ12θ21 − θ11θ22. Assuming the observability of the
rocess plant, the transfer functions formulation, Gmj(z) and
m(z) in Eqs. (26) and (27), can be merged into the state-space

omain and written in the observable canonical form.

y

w
w
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Exponential forgetting works properly all the time only if the
rocess is appropriately excited. On the other hand, in practice
here are many processes that cannot be excited during steady-
tate in normal operation. In such cases, the estimates θ̂i(k) and
he covariance matrix Pi(k) become unstable, which means that
he estimates would change abruptly as soon as ψfi becomes
ifferent from 0. The phenomenon is known as estimator windup
nd has to be taken care of. An easy way to avoid it is to update
he estimates and the covariance only when there is excitation.

e therefore introduced a dead-zone criterion in the recursive
lgorithm (see Eq. (28)), which is calculated only if the criterion
s satisfied, i.e., only when the process is properly excited.

T
fi(k)Pi(k − 1)ψfi(k) > kDZ(1 − γi), i = 1, 2 (28)

Here, kDZ denotes the factor of the dead-zone, which is
efined heuristically. In our case, kDZ = 0.01.

.2. Predictive functional control algorithm

In this section the well-known basic algorithm of predictive
unctional control is introduced [12,13]. In this instance, the
rediction of the plant output is given by its model in the state-
pace domain.

The behavior of the closed-loop system is defined by a
eference trajectory, which is given in the form of a refer-
nce model. The control goal, in general, is to determine the
uture control action so that the predicted output trajectory coin-
ides with the reference trajectory. The coincidence point is
alled the coincidence horizon and it is denoted by H. The
rediction is calculated assuming constant future manipulated
ariables (u(k) = u(k + 1) = . . . = u(k +H − 1)). This strat-
gy is known as mean-level control. The H-step-ahead prediction
f the plant output is estimated in Eq. (29).

m(k +H) = Cm(AHmxm(k) + (AHm − I)(Am − I)−1Bmu(k))

(29)

Here, I ∈R2×2 is a unity matrix.
The reference model is given by the following difference

quation:

xr(k + 1) = arxr(k) + brw(k)

yr(k) = crxr(k)
(30)

Here, w stands for the reference signal. The reference model
arameters should be chosen to fulfil the following equation:

r(1 − ar)
−1br = 1, (31)

hich results in a unity gain and where cr = 1 and br has to
e equal to 1 − ar. This enables reference trajectory tracking
ithout the control error (the asymptotic reference tracking).
The prediction of the reference trajectory is then written in

he following form
r(k +H) = aHr yr(k) + (1 − aHr )w(k), (32)

here a constant and bounded reference signal (w(k + i) =
(k), i = 1, . . . , H) is assumed. The main goal of the proposed
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lgorithm is to find a control law that enables the controlled
ignal yp(k) to track the reference trajectory.

To develop the control law, (32) is first rewritten as

(k +H) − yr(k +H) = aHr (w(k) − yr(k)). (33)

Taking into account the main idea of the proposed control
aw, the reference trajectory tracking (yr(k + i) = yp(k + i), i =
, 1, . . . , H), is given by

p(k +H) = w(k +H) − aHr (w(k) − yp(k)). (34)

The idea of PFC is introduced by the equivalence of the objec-
ive increment vector�p and the model output increment vector
m, i.e.,

p = �m. (35)

he former is defined as the difference between the predicted
eference signal vector yr(k +H) and the actual output vector
f the plant yp(k).

p = yr(k +H) − yp(k) (36)

ubstituting Eq. (34) into (37) yields

p = yp(k +H) − yp(k)

= w(k +H) − aHr (w(k) − yp(k)) − yp(k). (37)

he model output increment vector�m is defined by the follow-
ng formula.

m = ym(k +H) − ym(k) (38)

y substituting Eqs. (37) and (38) into (35) and making use of
qs. (34) and (29) the following control law can be obtained:

(k)=η−1((1 − aHr )(w(k) − yp(k)) + ym(k) − CmA
H
mxm(k)),

(39)

here,

= Cm(AHm − I)(Am − I)−1Bm. (40)

ote that the control law (39) is realizable if η /= 0. This con-
ition is true if the plant is stable, controllable and observable.
his means that the PFC control law in its common form can be

mplemented only for open-loop stable systems. It can also be
roven that the control law is integrative and the stability con-
itions can also be given [13]. The sensitivity to the parameter
ncertainties reduced is by introducing the integrative action into
he control law and also the asymptotic tracking of the reference
ariable is achieved. In [13] it is shown that a stable control law
an always be obtained for open-loop stable systems, when the
oincidence horizon H is greater than or is equal to the relative
rder of the controlled system ρ(H ≥ ρ) as proposed. The con-

rol algorithm in the case of the batch reactor should provide a
ast reference Tref(k) tracking of the temperature in the reactor’s
ore T (k). It is also very important that the number of on/off
alve switchings should be as small as possible. The position of

•

d Processing 47 (2008) 2379–2385 2383

he on/off valves (kCH(k)) is defined on the supervisory level by
ntroducing the decision logic, which is as follows:

if Tref(k) − T (k) < δe then kCH(k) = −1

else kCH(k) = 1
(41)

ere, δe defines the switching threshold (δe = −1 ◦C). This
pproach is a rather straightforward way of dealing with the
ybrid nature of the batch reactor.

The position of the mixing valve kM(k), which acts as the
irect control variable, is calculated in the next step from Eq.
4).

M(k) = T ∗
jin(k) − Tj(k)

Tin(k) − Tj(k)
(42)

ere, Tin(k) is defined by the position of the on/off valves.

. Results

The control algorithm was verified on the batch-reactor sim-
lation example. The simulation work in [2] concerning the
eaction described in Section 2.3 suggests that an equimolar
nitial charge of the ingredients A and B yields the best results.
n addition, the optimal reaction temperature is 95 ◦C.

Therefore, we have established the reference trajectory Tref
s a step function. The initial value of the reference trajectory is
5 ◦C, so that the ingredients react at the optimal temperature, as
pecified in [2]. After the reaction has settled, the reference drops
o 25 ◦ C so as to cool the ingredients down before engaging a
ew batch.

The initial charge of the ingredients A and B was MA =
B = 2 kmol, as suggested in [2]. The initial temperature was
= Tj = T0 = 17 ◦C.
In the simulation the following initialization of the identifi-

ation algorithm parameters was made:

The signals were sampled with the sampling time Ts = 20 s,
which was chosen by considering the relevant time-constants
of the plant.
The initial covariance matrices were equal to P1(0) = 100I3
and P2(0) = 100I2. Here Ij denotes an identity matrix of size
j. The initial values have to be positive definite and suffi-
ciently large. By using the Kalman-filter interpretation of the
least-squares parameter-estimation method, it may be seen
that this way of starting the recursion corresponds to the situ-
ation in which the parameters have an initial distribution with
covariance P1(0) and P2(0) [1].
The vectors of the estimated process parameters were ini-
tialized as θ11 = θ22 = 1. The other parameters were equal
to 0. Again, by using the Kalman-filter interpretation of the
least-squares parameter-estimation method, it may be seen
that this way of starting the recursion corresponds to the situ-
ation in which the parameters have an initial distribution with

the previously specified mean value.
The forgetting factors of the identification algorithms were
set to γ1 = γ2 = 0.995. The method for dealing with time-
varying parameters involves using a recursive least-squares
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Fig. 3. Concentration trajectories and heat generation.

Fig. 4. The identified parameters.
Fig. 2. Temperature trajectories and valve input signals.

algorithm with exponential forgetting [1]. The forgetting fac-
tor has to be set between 0 < γ ≤ 1, so as to introduce a
time-varying weighting of the data used for parameter esti-
mation. The most recent data is given a unit weight, whereas
k-steps-old data is weighted by γk.
The factor of the dead-zone was set to kDZ = 0.01. The intro-
duction of the dead-zone switches off the estimator when the
input signal is not appropriate by updating the estimates only
when the error is large enough.

The initialization of the generalized predictive control algo-
ithm was as follows:

The coincidence horizon was set toH = 10. This means that
the predicted output will coincide with the output of the ref-
erence model after 10 time steps.
The reference-model parameter was set to ar = 0.925. This
parameter defines the time-constant of the reference model
and should be set according to the time-constants of the real
plant. Changing this parameter results in a faster or slower
control response.

The noise at the batch-reactor outputs was also presumed in
he simulation.

Fig. 2 shows the control signals, i.e., the reference trajectory
ref, the temperature in the reactor core T and the temperature in

he reactor water jacket Tj . We can see that the reference trajec-
ory was followed well by the temperature in the reactor core T.

hat is more, the adaptive algorithm allows the control actions
o compensate for the strong exothermic reaction that takes place
n the reactor core and to prevent a thermal runaway as well as
o enable a response without an overshoot, which would not be
ossible when using a time-invariant process model.

Fig. 3 depicts the chemical reaction dynamics, i.e., the con-

entrations of the componentsMA,MB,MC,MD. We can see a
ecrease in the concentration of the components A and B and an
ncrease in the concentration of the components C and D during
he reactions. We can establish the rate of the reaction from the Fig. 5. The identified parameters.
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nclination of the relevant concentration trajectories. The heat-
ng power generated by both exothermic reactions is also shown
n Fig. 3.

Figs. 4 and 5 show the identified process parameters θ. The
gures are zoomed-in in order to show the changes of the param-
ters more clearly. However, we cannot see the initial values of
he process parameters.

. Conclusion

In this study we justified the usability of the self-adaptive pre-
ictive functional control algorithm. We tested the algorithm on
batch-reactor simulation example that included a well-known

xothermic chemical reaction kinetic model.
The results suggest that such an implementation meets the

ontrol demands, despite the strongly exothermic nature of
he chemical reaction. The reference is suitably tracked, which
esults in a shorter overall batch-time. In addition, there is no
vershoot of the controlled variable T, which results in higher-
uality production.

Batch reactors, such as the one used in the experiment, have a
ighly nonlinear and hybrid nature. What is more, such a process
annot be treated as a simple time-invariant process, especially
hen a strong exothermic reaction with unknown kinetics is

nvolved. In this paper we showed how to avoid some of the
ifficulties in the control design for such processes.

Firstly, we introduced an auxiliary state T ∗
jin, which cannot

e measured directly. In this way we were able to linearize the
ystem by treating T ∗

jin as a process input.
The linearized system allowed us to apply the self-adaptive

redictive functional control algorithm that can only be used
ith linear systems. In such a manner we were able to cope with

he time-varying parameters of the process, which is essential

ecause of the exothermic reaction with unknown kinetics that
akes place in the reactor core.

Finally, by introducing a suitable discrete switching logic in
rder to deal with the hybrid nature of the batch reactor, we were

[

[

d Processing 47 (2008) 2379–2385 2385

ble to reduce the switching of the on/off valves to a minimum
nd therefore relieve the wear-out of the actuators as well as
educe the energy consumption needed for the control.

We believe that this paper presents a new approach to dealing
ith control synthesis problems that arise from the complex non-

inear, time varying and hybrid dynamics of exothermic batch
eactors.
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